Всё Самое (camoe) wrote,
Всё Самое
camoe

Category:

САМАЯ не изученная и не доказанная из всех теорий точных наук (Часть 2)

Знакомьтесь: теория возникновения Вселенной

Пост по запросу:
sowetnik_p

Текст запроса: "Как устроена вселенная. Краткие формы про разные теории давай."

Начало здесь

1244192599_200159main_rs_image_feature_805_946x710

3) Плавно перейдём к самым новым открытиям и гипотезам на эту тему:

4.1. Общие принципы современной астрономии

Астрономия – одна из древнейших наук, переживающая в XX в. новое рождение. Слово «астрономия» происходит от греческих astron – звезда и nomos – закон. Современная астрономическая наука изучает процессы, протекающие в макро– и мегамире. Небесная механика, астродинамика, астрометрия изучают закономерности макроуровня; внегалактическая астрономия и космология – процессы мегау-ровня. Различие между макро– и мегамиром проводится следующим образом: объект относится к мегауровню, если его размеры превышают 109пк. При изучении процессов в мегамире современная астрономия апеллирует к тем данным, которые получены в «обычной» астрономии макромира и физике микромира.

XX в. можно назвать веком астрономической и космологической научной революции: новые открытия не просто подтолкнули развитие самой науки, но радикально изменили взгляд человека на происхождение и устройство Вселенной, свое место в мире и т. п. Выводы, которые формулируются в астрономии и космологии, имеют фундаментальный мировоззренческий характер и существенно влияют на те цели, которые ставит перед собой человечество.

Новые открытия происходили в астрономии на протяжении всего XX в.: в 1929 г. было обнаружено явление разбегания галактик; в 40-е гг. – существование больших скоплений звезд, которые распадаются после своего возникновения; в 50-е гг. открыты явления распада групп галактик; в 1963 г. – квазары и нейтронные звезды. Во второй половине XX в. началось практическое освоение космоса, которое стало дополнительным толчком для развития прикладных исследований в астрономии.

Следствием научной революции стало изменение способов познания и той картины мира, которая создается на основе этих исследований. Во-первых, благодаря новым техническим достижениям существенно расширилась область наблюдаемой Вселенной, т. е. изменился эмпирический фундамент астрономии. Во-вторых, в качестве теоретической базы стала рассматриваться уже не классическая физика, а квантовая механика и квантовая хромодинамика (3.3, 3.4, 3.5). В-третьих, современная астрономия отказалась от классических представлений о пространстве и времени и приняла в качестве своего теоретического основания релятивистскую концепцию пространственно-временного континуума

(3.2). В-четвертых, открытие нестационарности Вселенной, имевшее наиболее серьезные мировоззренческие последствия, привело к фундаментальному пересмотру представлений человека о мегамире и протекающих в нем процессах (4.2). В-пятых, современная астрономическая наука учла фактор активности субьекта познания, что выразилось в так называемом антропном космологическом принципе

(7.3). В-шестых, развитие эмпирических и теоретических исследований привело к отказу от идеи единственности нашей Вселенной и обсуждению гипотезы «множественности вселенных» (3.3, 7.3).

В отличие от классического экспериментального естествознания, в котором теоретические гипотезы выдвигались, как правило, для обьяснения уже открытых эмпирических фактов, современная астрономия развивается скорее обратным образом. Все новейшие представления о происхождении и развитии Вселенной (или вселенных) являются результатами математического моделирования и экстраполяции известного знания на новые области. Таким образом, сначала выдвигается теоретическая гипотеза и создается математическая модель, затем из нее делаются определенные выводы, и только потом они проверяются экспериментальным путем. Безусловно, выводы астрономии должны получать опытное подтверждение или опровержение, т. е. подвергаться процедурам верификации или фальсификации (1.2). Этим утверждается научный статус астрономии. Однако поскольку прямые подтверждения или опровержения сложны, существенно возрастает роль косвенных экспериментальных свидетельств. Но порой даже косвенная экспериментальная проверка отодвигается на десятилетия. Некоторые исследователи философских проблем астрономии вообще считают, что в ряде случаев экспериментальное подтверждение или опровержение теоретических космологических моделей в принципе невозможно. В связи с этим ведутся дискуссии о возникновении нового типа рациональности, который напрямую связан с характером современной астрономической науки (1.2).

4.2. Основные космологические гипотезы. Происхождение Вселенной

Происхождение, эволюция и устройство Вселенной как целого изучаются космологией. Слово «космология» происходит от греч. kosmos – вселенная и logos – закон. Уже древние мудрецы задались вопросом о происхождении и устройстве Вселенной, поэтому космология – учение о строении мира – и космогония – учение о происхождении мира – были неотъемлемым компонентом философских систем древности.

Современная космология – это раздел астрономии, в котором аккумулированы частнонаучные данные физики и математики и универсальные философские принципы, космология представляет собой синтез научных и философских знаний. Именно этим определяется ее специфика. Выводы космологии почти полностью обусловлены теми философскими принципами, на которые опирается исследователь. Дело в том, что размышления о происхождении и устройстве Вселенной эмпирически труднопроверяемы и существуют в виде теоретических гипотез или математических моделей (4.1). Космолог движется от теории к практике, от модели к эксперименту, в этом случае роль исходных философских и общенаучных оснований существенно возрастает. Именно поэтому космологические модели радикально различаются между собой – в их основе лежат разные, порой конфликтующие мировоззренческие принципы. Понятно, что религиозная космология будет серьезно отличаться от космологии, построенной на материалистических мировоззренческих основаниях. В свою очередь любые космологические выводы также влияют на общефилософские представления об устройстве Вселенной, т. е. изменяют фундаментальные представления человека о мире и самом себе. Таким образом, можно сказать, что современная космология – это не только «физика», но и «философия», а иногда и «религия».

Классические космологические представления, сутью которых было утверждение абсолютности и бесконечности пространства и времени, а также неизменности и вечности Вселенной, сталкивались с двумя неразрешимыми парадоксами – гравитационным и фотометрическим. Гравитационный парадокс заключался в противоречии между исходными постулатами о бесконечности Вселенной и ее вечности. Так, если предположить бесконечность мира, то необходимо также признать и бесконечность действующих в нем сил тяготения. Бесконечность сил тяготения между небесными телами должна была бы привести к коллапсу, т. е. Вселенная не могла бы существовать вечно, а это противоречит постулату о ее вечности. Фотометрический парадокс также вытекает из постулата бесконечности Вселенной. Если Вселенная бесконечна, то в ней должно существовать бесконечное число небесных тел, а значит, светимость неба также должна быть бесконечной, однако этого не происходит.

Парадоксы классической науки разрешаются в современной релятивистской космологии.

Началом революции в астрономии считается создание в 1917 г. А. Эйнштейном стационарной релятивистской космологической модели. В ее основу положена релятивистская теория тяготения, обоснованием которой служит общая теория относительности (3.2). А. Эйнштейн отказался от постулатов абсолютности и бесконечности пространства и времени, однако сохранил принцип стационарности, неизменности Вселенной во времени и ее конечности в пространстве. Свойства Вселенной, по мнению А. Эйнштейна, зависят от распределения в ней гравитационных масс, Вселенная безгранична, но при этом замкнута в пространстве. Сигнал, пущенный наблюдателем во Вселенной, вернется к нему с противоположной стороны. Согласно стационарной релятивистской модели пространство однородно и изотропно (3.2), материя распределена в нем равномерно, время бесконечно, а его течение не влияет на свойства Вселенной. Таким образом, несмотря на новизну и даже революционность идей, А. Эйнштейн в своей космологической теории ориентировался на привычную классическую мировоззренческую установку статичности мира: А. Эйнштейна более привлекал гармоничный и устойчивый мир, нежели мир противоречивый и неустойчивый. В конце жизни великий ученый с сожалением говорил о том, что теория статичной Вселенной не имеет эмпирического подтверждения.

В 1922 г. российский математик и физик А. Фридман выступил с критикой теории А. Эйнштейна. Его идеи стали началом нестационарной релятивисткой космологии. Космологическая концепция А. Фридмана основывается на нескольких принципах.

1. Космологический принцип однородности и изотропности пространства. Изотропность означает, что во Вселенной не существует выделенных точек и направлений. Однородность характеризует распределение вещества во Вселенной. Космологический постулат имеет сильный и слабый варианты. Слабый вариант предполагает независимость процессов, протекающих во Вселенной, от направления (изотропность) и места (однородность). Сильный вариант космологического принципа предполагает независимость (инвариантность преобразований) процессов не только от направления и места, но и от времени. Это значит, что Вселенная выглядит одинаково из любого места, в любом направлении и в любой момент времени. Этот принцип получил название совершенного космологического принципа.

2. Релятивистский принцип взаимосвязи пространства и времени и их зависимости от материи. Пространственно-временная метрика Вселенной задается гравитационными полями, признаются также искривленность пространства и замедление времени во всех частях Метагалактики. Пространственно-временная метрика описывается уравнениями общей теории относительности.

3. Принцип конечной скорости протекания любыгх физических процессов.

4. Принцип нестационарности Вселенной, поначалу основанный только на математических расчетах, согласно которым искривленное пространство не может быть стационарным, его кривизна должна меняться во времени.

Все эти принципы дают основание переносить данные, полученные в одной части Вселенной, на все остальные ее части.

А. фридман предложил три модели Вселенной. В первой рассматривается случай средней плотности вещества и неискривленности пространства. В такой ситуации Вселенная должна бесконечно расширяться из некоторой исходной точки. Во второй модели предполагалась плотность вещества меньше критической. В этом случае пространство обладает отрицательной кривизной, а Вселенная также должна неограниченно расширяться из начальной точки. В третьей модели рассматривался случай плотности вещества выше критической. В этой ситуации пространство должно иметь положительную кривизну, а Вселенная периодически расширяться и сжиматься.

Концепция А. фридмана некоторое время не имела эмпирического подтверждения. Однако в 1929 г. физик Э. Хаббл обнаружил эффект «красного смещения» в спектрах удаленных галактик. «Красное смещение» означает понижение частот электромагнитного излучения при удалении источника света от наблюдателя. Т. е. если источник света удаляется от нас, то воспринимаемая частота излучений уменьшается, а длины волн увеличиваются, линии видимого спектра смещаются в сторону более длинных красных волн. Оказалось, что «красное смещение» пропорционально расстоянию до источника света. Исследования Э. Хаб-бла подтвердили, что удаленные от нас галактики разбегаются, т. е. Вселенная находится в состоянии расширения, а значит, нестационарна. Другим важным экспериментальным свидетельством в пользу гипотезы расширяющейся Вселенной стало открытие реликтового излучения – слабого радиоизлучения, свойства которого являются в точности такими, какими они должны были быть на этапе горячей, взрывной Вселенной.

В 1927 г. бельгийский ученый Ж. Леметр предложил понятие сингулярности как исходное состояние Вселенной. Ж. Леметр предположил, что первоначальный радиус Вселенной равнялся 10-12см, а ее плотность– 1096г/см3, т. е. в начальном состоянии Вселенная должна представлять собой микрообьект, по размерам близкий к электрону. В 1965 г. С. Хокинг математически обосновал необходимость состояния сингулярности в любой модели расширяющейся Вселенной.

Представление о развитии Вселенной привело к постановке проблемы начала эволюции (рождения) Вселенной и ее конца (смерти). Вселенная развивается из исходного сингулярного состояния, радиус которого бесконечно мал, а плотность материи бесконечно велика, проходит различные этапы своего развития, а затем умирает. Состояние сингулярности можно трактовать как обрыв времени в прошлом. По-видимому, такой обрыв времени следует предположить и в будущем. В моделях пульсирующей Вселенной та точка, в которой расширение сменится сжатием, рассматривается как обрыв времени в будущем. Момент «начала» времени называется Большим Взрывом. Момент «конца» времени был назван Ф. Типлером Великим Стоком.

Если есть рождение и смерть, то можно говорить о возрасте Вселенной. Ученые рассчитали, что если бы скорость расширения была постоянной на протяжении всего существования Вселенной, то можно было бы говорить о возрасте в 18 млрд лет. Однако современная космология утверждает, что расширение Вселенной постепенно замедляется. Поэтому время, прошедшее с момента Большого Взрыва, может составить 12 млрд лет. Если же предположить существование космических сил отталкивания – такое допущение делается в инфляционных моделях, – то возраст Вселенной будет значительно больше. Современные космологи оценивают возраст Вселенной в 12–20 млрд лет.

С представлением о возрасте Вселенной связано понятие космологического горизонта, отделяющего доступную для наблюдений область пространства от недоступной. За время, прошедшее с момента возникновения Вселенной, свет мог пройти конечное расстояние, которое оценивается величиной в 6000 Мпк. Мы можем наблюдать только ту часть мира, которая находится в пределах этого радиуса, поскольку от более удаленных областей пространства свет еще не успел до нас дойти. Кроме того, удаленные области пространства мы видим такими, какими они были миллиарды лет назад. Космологический горизонт растет пропорционально времени, с каждым днем область доступной для наблюдения Вселенной увеличивается.

В 40-е гг. XX в. наступил новый этап развития космологии: для объяснения происхождения Вселенной американским физиком Дж. Гамов^хм б^1ла предложена гипотеза Большого Взрыва. Согласно этой гипотезе, Вселенная возникла в результате взрыва из первоначального состояния сингулярности. Дальнейшая эволюция происходила поэтапно и сопровождалась, с одной стороны, дифференциацией, а с другой – усложнением структур. Этапы эволюции Вселенной называются эрами.

Адронная эра: длительность 10-7с, температура Вселенной составляет 1032К. Главными действующими лицами являются элементарные частицы, между которыми осуществляется сильное взаимодействие. Вселенная представляет собой разогретую плазму.

Лептонная эра: длительность 10 с, температура Вселенной 1015К. Главные действующие лица – лептоны (электроны, позитроны и др.).

Эра излучения:: длительность 1 млн лет, температура Вселенной 10 000 К. В это время во Вселенной преобладало излучение, а вещество было ионизированным.

Эра вещества:: длится и сейчас. Вселенная остывает, становится нейтральной и темной, образуется вещество. В начале этой эры возникают первые протозвезды и протогалак-тики. Излучение перестает взаимодействовать с веществом и начинает свободно перемещаться по Вселенной. Именно эти фотоны и нейтрино, остывшие до 3 К, наблюдаются сейчас в виде реликтового излучения.

Гипотезу Большого Взрыва называют также моделью горячей Вселенной, или стандартной моделью. Эта гипотеза стала общепринятой после открытия в 1965 г. реликтового излучения. Несмотря на стандартность и общепринятость, концепция Большого Взрыва не дает ответа на некоторые вопросы. Например, каковы причины образования галактик из ионизированного газа? Почему наблюдается асимметрия вещества и антивещества? Самой большой проблемой остается состояние сингулярности, введение которого требуется уравнениями общей теории относительности А. Эйнштейна.

Для моделирования первых мгновений существования Вселенной, прояснения причин Большого Взрыва и обьяс-нения сингулярности физиком А. Гутом была предложена инфляционная гипотеза, или модель инфляционной Вселенной. На данном этапе развития науки инфляционная концепция не может получить прямого эмпирического подтверждения, однако она предсказывает новые факты, которые в принципе могут быть проверены. Инфляционная теория описывает эволюцию Вселенной начиная с 10-45с после начала расширения. Модель раздувающейся (инфляционной) Вселенной не противоречит гипотезе Большого Взрыва, включая ее в качестве своего частного случая. Различие между концепцией Большого Взрыва и концепцией инфляционной Вселенной касается только первых мгновений существования мира– до 10-30с, принципиальных мировоззренческих расхождений между этими гипотезами нет.

Согласно инфляционной модели первоначальное состояние Вселенной – состояние квантовой супергравитации. Радиус Вселенной в этот момент составляет 10-50см. Это значительно меньше радиуса атомного ядра, который оценивается величиной 10-13см. Первоначальное состояние Вселенной – вакуум, особая форма материи, характеризующаяся высокой активностью. Вакуум как бы «кипит», в нем постоянно рождаются и уничтожаются виртуальные частицы. Возникновение частиц из вакуума описывается понятием флуктуации. Вакуум может находиться в состояниях, характеризующихся разными давлениями и энергиями. Если вакуум возбужден (так называемый ложный вакуум), то в процессе порождения и уничтожения виртуальных частиц возникает огромная сила космического отталкивания, которая и приводит к раздуванию «пузырей» – зародышей вселенных. Исходное состояние ложного вакуума можно сравнить с кипением воды в котле. Каждый из «пузырей» – домен, отдельная Вселенная, характеризующаяся собственными значениями фундаментальных физических констант. Считается, что наша Вселенная – один из «пузырей», возникших из вакуумной пены.

Раздувание, или быстрое расширение, было названо инфляцией. На фазе инфляции примерно в промежутке с 10-43с до 10-34с формируются пространственно-временные характеристики Вселенной. Таким образом, в рамках инфляционной модели предполагается существование мира без пространства и времени, поскольку в первой стадии раздувания Вселенной такие характеристики отсутствуют.

Во время фазы инфляции Вселенная «раздулась» до размера 101000000см, что намного превосходит размер наблюдаемой сейчас Метагалактики (1028см). Примерно через 10-34с после начала расширения неустойчивый вакуум распадается, а силы космического отталкивания иссякают. Как показали эксперименты, при падении температуры ниже 1027К наблюдаются процессы распада. Однако в силу того что распад частиц и античастиц идет по-разному, во Вселенной образуется незначительное преобладание вещества над антивеществом: на миллиард античастиц образуется миллиард плюс одна частица. Удовлетворительных объяснений этой асимметрии пока не найдено. Именно это избыточное вещество и стало «материалом» для Вселенной. Нарушение симметрии между веществом – антивеществом привело к нарушению равновесности системы, и она перешла в новое состояние, изменив свою структуру.

В это время во Вселенной начинает действовать известная нам сила гравитационного притяжения. Но поскольку начальный импульс расширения был очень сильным, Вселенная продолжает расширяться, однако значительно медленнее. Расширение сопровождается понижением температуры. На этом этапе Вселенная пуста, в ней нет ни излучения, ни вещества. Однако энергия, которая выделилась при распаде ложного вакуума, идет на мгновенный нагрев Вселенной до температуры примерно 1027К. Происходит своеобразная вспышка света. Энергия, мгновенно разогревшая Вселенную, сейчас понимается как суперсила, которая объединяла все известные четыре типа фундаментальных взаимодействий: гравитационное, сильное, слабое и электромагнитное (3.5).

На этом заканчивается стадия инфляции и начинается эволюция горячей Вселенной, описываемая моделью Большого Взрыва. Первый этап эволюции Вселенной был назван эрой Великого объединения.

Через 10-12с после Большого Взрыва температура Вселенной составляла около 1015К. В это время начинается образование известных нам частиц и античастиц. Однако в силу того что температура очень высока, свойства этих частиц сильно отличались от тех, которые наблюдаются сейчас. При падении температуры ниже 1015К возникают современные частицы, которые теперь становятся вполне различимыми.

При температуре 1013К кварки начинают объединяться в группы и образуются адроны – протоны и нейтроны. На этом этапе единая суперсила распадается на гравитационное, сильное и электрослабое взаимодействия. В конце первой секунды после Большого Взрыва температура Вселенной составляет 1010К.

В начале следующего этапа, длительность которого от 1 с до 1 млн лет, происходит разделение электрослабого взаимодействия на электромагнитное и слабое. Через минуту температура Вселенной падает до 108К, а еще через несколько минут складываются условия, при которых стали возможны ядерные реакции синтеза сложных элементов. В это время материя представляет собой плазму, на 10 % состоящую из ядер гелия и на 90 % – из ядер водорода. В момент, когда возникли атомы водорода и гелия, космическое вещество стало «прозрачным», проницаемым для фотонов, которые начинают излучаться в пространство. Сейчас мы можем наблюдать остаточные явления этого процесса в виде реликтового излучения. Из атомов водорода и гелия образовался газ, и сложились условия для формирования других химических элементов – бериллия и лития.

Через 1 млн лет после начала расширения Вселенной наступил этап образования звезд и галактик. В недрах звезд в результате термоядерных реакций стали синтезироваться тяжелые элементы, которые в результате взрывов звезд разбрасывались по Вселенной и становились строительным материалом для других космических объектов. Дальнейшая эволюция Вселенной пошла в направлении создания все более сложных структур, что в свое время привело к возникновению жизни и разума. Таким образом, микроэволюция выступила предпосылкой макроэволюции, а космоге-нез получил продолжение в гео– и химогенезе.

Несмотря на то что гипотезы Большого Взрыва и инфляционной Вселенной являются общепринятыми в научной среде, они порождают серьезные теоретические проблемы и подвергаются критике. Так, например, американский ученый К. Болдинг считает, что проблемы возникают уже на уровне общепринятых постулатов, лежащих в основе космологического моделирования, и нет никаких оснований заранее отвергать альтернативные подходы к пониманию Вселенной.

Самые большие проблемы современной космологии связаны с описанием ненаблюдаемого и труднообъяснимого состояния сингулярности, которое даже иногда называют аномальным фактом. Введение состояния сингулярности требуется математическими расчетами, но при этом само не поддается математическому описанию и представляет серьезную концептуальную проблему. Некоторые ученые вообще заявляют, что физическая теория, предсказывающая сингулярность, является несостоятельной, поскольку проблема сингулярности оставляет открытым фундаментальный вопрос космологии – о начальных параметрах Вселенной. Проблема сингулярности имеет важное мировоззренческое значение, поскольку разрушает представление о вечном и бесконечном мире и подталкивает к выработке новой картины мира.

Вторая проблема современной космологии связана с принципом экстраполяции на всю Вселенную законов, открытых в земных условиях. Возникает серьезный вопрос: правомочна ли такая экстраполяция? Причем речь идет не только о переносе «земных^> законов на „неземную“ область, но и об экстраполяции законов и свойств наблюдаемой Вселенной на принципиально ненаблюдаемую. Нет никаких доказательств того, что физические законы, открытые на Земле, действуют во всей Вселенной и на всех этапах ее эволюции. Как считают математики С. Хокинг и Г. Эллис, предположение о том, что законы физики, открытые и изученные в лаборатории, будут справедливы в других точках пространственно-временного континуума, безусловно, является очень смелым.

Трудности, с которыми сталкивается современная научная космология, используются как аргумент в пользу существования высшего разума, который и создает Вселенную. В этом случае научная картина мира подменяется теологической. В такого рода космологических концепциях состояния сингулярности и ложного вакуума рассматриваются как то самое «ничто», о котором говорится в религиозных текстах. Из этого «ничто» божественная сила творит мир. Точная «подогнанность» фундаментальных физических параметров нашей Вселенной, приведшая в конце концов к возникновению жизни и разума, также переинтерпретируется в телеологическом и теологическом духе и рассматривается как свидетельство высшего замысла, согласно которому и происходит эволюция мира (7.3).

Религиозные и мистические версии происхождения и развития Вселенной, маскирующиеся под научные объяснения, представляют собой различные варианты квазинаучного знания (1.1), которое на очередной волне ремифоло-гизации стремится завоевать прочные позиции в культуре. Следует все же сказать, что, несмотря на все трудности нынешних космологических моделей, наиболее приемлемым по-прежнему остается поиск естественных причин возникновения и эволюции Вселенной без апелляции к сверхъестественным силам и сущностям.


Tags: Наука, Пост по запросу
Subscribe

Recent Posts from This Journal

  • САМЫЙ бесстрашный

    Знакомьтесь: Кевин Ричардсон (Kevin Richardson), известный как «Заклинатель Львов» Зоолог Кевин Ричардсон (Kevin Richardson),…

  • САМЫЙ несгибаемый человек!

    Знакомьтесь: Ник Вуйчич Он родился без рук и ног и нашел свое призвание в том, чтобы своим примером, юмором и оптимизмом встряхивать других…

  • Самый странный кот

    Знакомьтесь: кота зовут Workbench И где-же это странное пушистое мимимишное животное? спросите вы - а вот он - раньше был кот в мешке, теперь кот…

Buy for 100 tokens
Buy promo for minimal price.
  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 11 comments

Recent Posts from This Journal

  • САМЫЙ бесстрашный

    Знакомьтесь: Кевин Ричардсон (Kevin Richardson), известный как «Заклинатель Львов» Зоолог Кевин Ричардсон (Kevin Richardson),…

  • САМЫЙ несгибаемый человек!

    Знакомьтесь: Ник Вуйчич Он родился без рук и ног и нашел свое призвание в том, чтобы своим примером, юмором и оптимизмом встряхивать других…

  • Самый странный кот

    Знакомьтесь: кота зовут Workbench И где-же это странное пушистое мимимишное животное? спросите вы - а вот он - раньше был кот в мешке, теперь кот…